

Exercise 3.2

Find x, y, z, from the followings, if possible. Mention the reason Q1. if not possible.

(a)
$$[x \ 9] = [2 \ y]$$

Solution:
$$\begin{bmatrix} x & 9 \end{bmatrix} = \begin{bmatrix} 2 & y \end{bmatrix}$$

We equate the corresponding elements of the matrices:

$$\Rightarrow x=2$$

$$\Rightarrow$$
 9 = y

Thus, the solution is x = 2, y = 9.

(b)
$$\begin{bmatrix} 6 & 3 \\ 4 & x \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 4 & 0 \end{bmatrix}$$

Solution:

To find the values of x from the equation $\begin{bmatrix} 6 & 3 \\ 4 & x \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 4 & 0 \end{bmatrix}$

We equate the corresponding elements of the matrices:

$$\Rightarrow$$
 6 = 7 (this is not true)

$$\Rightarrow$$
 3 = 3 (this is true)

$$\Rightarrow$$
 4 = 4 (this is true)

$$\Rightarrow x = 0$$

Impossible, corresponding elements are not equal.

(c)
$$\begin{bmatrix} 5x \\ 2y \end{bmatrix} = \begin{bmatrix} -10 & 20 \end{bmatrix}$$

Solution:
$$\begin{bmatrix} 5x \\ 2y \end{bmatrix} = \begin{bmatrix} -10 & 20 \end{bmatrix}$$

Sky Impossible; orders of matrices are not equal.

(d)
$$-\begin{bmatrix} 2x & 3y \\ 4z & 10 \end{bmatrix} = \begin{bmatrix} 8 & 6 \\ 32 & -10 \end{bmatrix}$$

Solution:

The given matrix equation is:
$$-\begin{bmatrix} 2x & 3y \\ 4z & 10 \end{bmatrix} = \begin{bmatrix} 8 & 6 \\ 32 & -10 \end{bmatrix}$$

To solve for x, y, and z, we first remove the negative sign by multiplying the entire left matrix by -1.

$$\Rightarrow \begin{bmatrix} 2x & 3y \\ 4z & 10 \end{bmatrix} = -\begin{bmatrix} 8 & 6 \\ 32 & -10 \end{bmatrix} \Rightarrow \begin{bmatrix} 2x & 3y \\ 4z & 10 \end{bmatrix} = \begin{bmatrix} -8 & -6 \\ -32 & 10 \end{bmatrix}$$

Now, we equate the corresponding elements of the matrices:

$$\Rightarrow$$
 $2x = -8$

 \Rightarrow 3y = -6

 \Rightarrow 4z = -32

 \Rightarrow 10 = 10 (This holds true)

Solving for x:

 $2x = -8 \qquad \Rightarrow \qquad x = \frac{-8}{2} = -4$

Solving for y:

 $3y = -6 \qquad \Rightarrow \qquad y = \frac{-6}{3} = -2$

Solving for z:

 $4z = -32 \quad \Rightarrow \quad z = \frac{-32}{4} = -8$

Thus, the solutions are x = -4, y = -2, z = -8.

(e) $\begin{bmatrix} x & -2y \\ 6 & x+y \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ 6 & z \end{bmatrix}$

Solution: The given matrix equation is: $\begin{bmatrix} x & -2y \\ 6 & x+y \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ 6 & z \end{bmatrix}$

To solve for x, y, and z, we equate the corresponding elements of the matrices:

 $\Rightarrow x=3$

 \Rightarrow -2y = -6

 \Rightarrow 6 = 6 (This holds true)

 $\Rightarrow x + y = z$

Solving for y: $-2y = -6 \implies y = \frac{-6}{-2} = 3$

Using x = 3 and y = 3 to solve for z. Substitute x = 3 and y = 3 into x + y = z.

 $\Rightarrow 3+3=z \Rightarrow z=6$

Thus, the solutions are x = 3, y = 3, z = 6.

(f) $\begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ x & 0 \\ 7 & 0 \end{bmatrix}$

Solution:

Impossible; orders of matrices are not equal.

 $\begin{pmatrix} \bullet \\ \bullet \end{pmatrix} = \begin{bmatrix} x+y \\ x-y \end{bmatrix} = \begin{bmatrix} 11 \\ 1 \end{bmatrix}$

Solution:

To solve the given system of equations represented by the matrix equation:

 $\Rightarrow \begin{bmatrix} x+y \\ x-y \end{bmatrix} = \begin{bmatrix} 11 \\ 1 \end{bmatrix}$

We equate the corresponding elements:

 $\Rightarrow x+y=11$

 $\Rightarrow x-y=1$

Add the two equations.

 $\Rightarrow (x+y)+(x-y)=11+1$

This simplifies to:
$$2x = 12$$

$$2x = 12$$

$$\Rightarrow x = \frac{12}{2} = 6$$

Substitute x = 6 into one of the equations to find y.

Using the first equation x + y = 11.

$$\Rightarrow 6+y=11 \Rightarrow y=11-6=5$$

$$y = 11 - 6 = 5$$

Thus, the solution is x = 6, y = 5.

(h)
$$\begin{bmatrix} 5 & 10 \\ 15 & x \end{bmatrix} + \begin{bmatrix} 5 & y \\ 15 & 5 \end{bmatrix} = \begin{bmatrix} z & 15 \\ 30 & 7 \end{bmatrix}$$

Solution:

We first perform the matrix addition on the left side:

$$\Rightarrow \begin{bmatrix} 5+5 & 10+y \\ 15+15 & x+5 \end{bmatrix} = \begin{bmatrix} z & 15 \\ 30 & 7 \end{bmatrix}$$

This simplifies to:

$$\Rightarrow \begin{bmatrix} 10 & 10+y \\ 30 & x+5 \end{bmatrix} = \begin{bmatrix} z & 15 \\ 30 & 7 \end{bmatrix}$$

Now, we equate the corresponding elements:

$$\Rightarrow$$
 10 = z

$$\Rightarrow$$
 10 + y = 15

$$\Rightarrow x+5=7$$

• Solving for y:
$$10 + y = 15 \implies y = 15 - 10 = 5$$

• Solving for x:
$$x+5=7 \Rightarrow x=7-5=2$$

Thus, the solutions are $x=2$, $y=5$, $z=10$.

(i)
$$5\begin{bmatrix} x \\ 3y \end{bmatrix} - \begin{bmatrix} 36 \\ 26 \end{bmatrix} = 2\begin{bmatrix} -2x \\ y \end{bmatrix}$$

Solution:

We first expand the matrices:

The equation becomes:
$$\begin{bmatrix} 5x \\ 15y \end{bmatrix} - \begin{bmatrix} 36 \\ 26 \end{bmatrix} = \begin{bmatrix} -4x \\ 2y \end{bmatrix}$$

This can be rewritten as:
$$\begin{bmatrix} 5x - 36 \\ 15y - 26 \end{bmatrix} = \begin{bmatrix} -4x \\ 2y \end{bmatrix}$$

Now, equate the corresponding elements:

$$\Rightarrow$$
 $5x-36=-4x$

$$\Rightarrow$$
 15y - 26 = 2y

Solving for x:

$$\Rightarrow 5x - 36 = -4x \Rightarrow 5x + 4x = 36$$

$$\Rightarrow$$
 $9x = 36$ \Rightarrow $x = \frac{36}{9} = 4$

Solving for y:

$$\Rightarrow 15y - 26 = 2y \Rightarrow 15y - 2y = 26$$

$$\Rightarrow 13y = 26 \qquad \Rightarrow y = \frac{26}{13} = 2$$

Thus, the solutions are x = 4, y = 2.

(j)
$$\begin{bmatrix} x & y & z \\ -2 & -4 & 5 \end{bmatrix} + 2 \times \begin{bmatrix} 5 & 3 & 2 \\ 1 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 8 & 11 \end{bmatrix}$$

Solution:

Multiply the second matrix by 2 and add this result to the first matrix:

$$\Rightarrow \begin{bmatrix} x & y & z \\ -2 & -4 & 5 \end{bmatrix} + \begin{bmatrix} 10 & 6 & 4 \\ 2 & 12 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 8 & 11 \end{bmatrix}$$

Now, equate it to the resulting matrix:

$$\Rightarrow \begin{bmatrix} x+10 & y+6 & z+4 \\ 0 & 8 & 11 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 8 & 11 \end{bmatrix}$$

Equating the corresponding elements:

$$\Rightarrow x+10=0$$

$$\Rightarrow x+10=0$$

$$\Rightarrow y+6=0$$

$$\Rightarrow z+4=0$$

$$\Rightarrow z+4=0$$

• Solving for x:
$$x+10=0 \implies x=-10$$

• Solving for y:
$$y+6=0 \Rightarrow y=-6$$

Solving for x:
$$x+10=0 \Rightarrow x=-10$$
Solving for y: $y+6=0 \Rightarrow y=-6$
Solving for z: $z+4=0 \Rightarrow z=-4$

Thus, the solutions are x = -10, y = -6, z = -4.

Find the additive inverses of the following. Q2.

$$R = \begin{bmatrix} 5 & 0 & 3 \\ 7 & -9 & -1 \\ -8 & 5 & 6 \end{bmatrix}, S = \begin{bmatrix} -5 & 2 \\ 3 & -6 \\ -9 & 4 \end{bmatrix}, T = \begin{bmatrix} 5 & -6 & 1 \end{bmatrix}$$

Solution:

To find the additive inverse of a matrix, you simply negate each element of:

Matrix R: Given,
$$R = \begin{bmatrix} 5 & 0 & 3 \\ 7 & -9 & -1 \\ -8 & 5 & 6 \end{bmatrix}$$

• Additive inverse of R:
$$-R = \begin{bmatrix} -5 & 0 & -3 \\ -7 & 9 & 1 \\ 8 & -5 & -6 \end{bmatrix}$$

Matrix S: Given,
$$S = \begin{bmatrix} -5 & 2 \\ 3 & -6 \\ -9 & 4 \end{bmatrix}$$

• Additive inverse of S:
$$-S = \begin{bmatrix} 5 & -2 \\ -3 & 6 \\ 9 & -4 \end{bmatrix}$$

Matrix T: Given,
$$T = \begin{bmatrix} 5 & -6 & 1 \end{bmatrix}$$

Additive inverse of T: $-T = \begin{bmatrix} -5 & 6 & -1 \end{bmatrix}$

These are the additive inverses of the matrices R, S, and T.

Q3. If
$$A = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix}$, $C = \begin{bmatrix} 15 & 6 \\ 0 & -12 \end{bmatrix}$, then find:

(i)
$$2A + \frac{1}{2}B - \frac{1}{3}C$$
 (ii) $A - \frac{1}{2}B$

Solution:

(i)
$$2A + \frac{1}{2}B - \frac{1}{3}C$$

$$\Rightarrow 2A + \frac{1}{2}B - \frac{1}{3}C = 2\begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix} - \frac{1}{3}\begin{bmatrix} 15 & 6 \\ 0 & -12 \end{bmatrix}$$

$$\Rightarrow 2A + \frac{1}{2}B - \frac{1}{3}C = \begin{bmatrix} 10 & 6 \\ -4 & 12 \end{bmatrix} + \begin{bmatrix} 5 & 4 \\ -4 & 3 \end{bmatrix} - \begin{bmatrix} 5 & 2 \\ 0 & -4 \end{bmatrix}$$
$$= \begin{bmatrix} 10 + 5 & 6 + 4 \\ -4 - 4 & 12 + 3 \end{bmatrix} - \begin{bmatrix} 5 & 2 \\ 0 & -4 \end{bmatrix}$$
$$= \begin{bmatrix} 15 & 10 \\ -8 & 15 \end{bmatrix} - \begin{bmatrix} 5 & 2 \\ 0 & -4 \end{bmatrix}$$

$$\Rightarrow 2A + \frac{1}{2}B - \frac{1}{3}C = \begin{bmatrix} 15 - 5 & 10 - 2 \\ -8 - 0 & 15 - (-4) \end{bmatrix} = \begin{bmatrix} 10 & 8 \\ -8 & 19 \end{bmatrix}$$

(ii)
$$A - \frac{1}{2}B$$

$$\Rightarrow A - \frac{1}{2}B = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix}$$

$$\Rightarrow A - \frac{1}{2}B = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix} - \begin{bmatrix} 5 & 4 \\ -4 & 3 \end{bmatrix}$$

Subtract corresponding elements:

$$= \begin{bmatrix} 5-5 & 3-4 \\ -2-(-4) & 6-3 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix}$$

Q4. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 \\ 3 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 6 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$, $E = \begin{bmatrix} 2 & 2 \\ 6 & 6 \end{bmatrix}$.

Then check whether:

(i)
$$A + B = C$$

(ii)
$$C+D=F$$

(iii)
$$D + D = E$$

(ii)
$$C+D=E$$

(iv) $E-D=C$

Solution:

(i) Check if
$$A + B = C$$

Given:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 \\ 3 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 6 & 0 \end{bmatrix}$

Calculate A + B:

$$\Rightarrow$$
 A + B = $\begin{bmatrix} 1+1 & 2+(-2) \\ 3+3 & -3+3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 6 & 0 \end{bmatrix} = C$

Since A + B = C, statement (i) is true.

(ii) Check if C + D = E

Given:
$$C = \begin{bmatrix} 2 & 0 \\ 6 & 0 \end{bmatrix}$$
, $D = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$, $E = \begin{bmatrix} 2 & 2 \\ 6 & 6 \end{bmatrix}$

To perform the addition C+D, we need compatible dimensions / order of matrix. C has dimensions / order 2×2 and D has dimensions / order 2×1 , so matrix addition is not possible here. Therefore, statement (ii) is false due to incompatible dimensions / order.

(iii) Check if D + D = E

Calculate D + D: D + D =
$$\begin{bmatrix} 2 \\ 6 \end{bmatrix}$$
 + $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ = $\begin{bmatrix} 4 \\ 12 \end{bmatrix}$

Given:
$$\mathbf{E} = \begin{bmatrix} 2 & 2 \\ 6 & 6 \end{bmatrix}$$

Since D + D does not equal E due to different dimensions / order, statement (iii) is false.

(iv) Check if E - D = C

Calculate
$$E - D$$
: $E - D = \begin{bmatrix} 2 & 2 \\ 6 & 6 \end{bmatrix} - \begin{bmatrix} 2 \\ 6 \end{bmatrix}$

Subtracting **D** from **E** is not directly possible due to incompatible dimensions/ order, so statement (iv) is false.

Q5. Taking matrices A and B from Q.3, verify commutative property of matrix addition.

Solution:

The commutative property of matrix addition states that for any two matrices A and B of the same dimensions, A + B = B + A.

Let's verify this using the given matrices:

$$\Rightarrow A = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix}, B = \begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix}.$$

Calculate A + B:

$$\Rightarrow A + B = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix} = \begin{bmatrix} 5+10 & 3+8 \\ -2+(-8) & 6+6 \end{bmatrix} = \begin{bmatrix} 15 & 11 \\ -10 & 12 \end{bmatrix}$$

Calculate B + A:

$$\Rightarrow B+A = \begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix} + \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 10+5 & 8+3 \\ -8+(-2) & 6+6 \end{bmatrix} = \begin{bmatrix} 15 & 11 \\ -10 & 12 \end{bmatrix}$$

Since $A + B = B + A = \begin{bmatrix} 15 & 11 \\ -10 & 12 \end{bmatrix}$, the commutative property of matrix addition is verified.

Q6. Taking matrices A, B and C from Q.3, verify associative property of matrix addition.

Solution:

The associative property of matrix addition states that for any, three matrices A, B, and C of the same dimensions, the following holds:

$$\Rightarrow$$
 $(A+B)+C=A+(B+C)$

Let's verify this property using the given matrices:

$$\Rightarrow A = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix}, B = \begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix}, C = \begin{bmatrix} 15 & 6 \\ 0 & -12 \end{bmatrix}$$

• Calculate A + B:
$$A + B = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix} = \begin{bmatrix} 15 & 11 \\ -10 & 12 \end{bmatrix}$$

Add C to the result.

$$\Rightarrow (A+B)+C=\begin{bmatrix} 15 & 11 \\ -10 & 12 \end{bmatrix}+\begin{bmatrix} 15 & 6 \\ 0 & -12 \end{bmatrix}=\begin{bmatrix} 30 & 17 \\ -10 & 0 \end{bmatrix}$$

• Calculate B + C: B + C =
$$\begin{bmatrix} 10 & 8 \\ -8 & 6 \end{bmatrix}$$
 + $\begin{bmatrix} 15 & 6 \\ 0 & -12 \end{bmatrix}$ = $\begin{bmatrix} 25 & 14 \\ -8 & -6 \end{bmatrix}$ Add A'to the result.

$$\Rightarrow A + (B + C) = \begin{bmatrix} 5 & 3 \\ -2 & 6 \end{bmatrix} + \begin{bmatrix} 25 & 14 \\ -8 & -6 \end{bmatrix} = \begin{bmatrix} 30 & 17 \\ -10 & 0 \end{bmatrix}$$

Both (A + B) + C and A + (B + C) result in the same matrix: $\begin{bmatrix} 30 & 17 \\ -10 & 0 \end{bmatrix}$

Thus, the associative property of matrix addition is verified.

Q7. Taking matrices A and B from Q.4, verify that $A^t + B^t = (A + B)^t$. Solution:

To verify that $A^t + B^t = (A + B)^t$, we need to calculate each side of the equation using the given matrices A and B.

SKOLYXX

Given:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 \\ 3 & 3 \end{bmatrix}$

Calculate At and Bt.

• Transpose of A:
$$A^t = \begin{bmatrix} 1 & 3 \\ 2 & -3 \end{bmatrix}$$

• Transpose of B:
$$B^t = \begin{bmatrix} 1 & 3 \\ -2 & 3 \end{bmatrix}$$

Calculate At + Bt.

$$\Rightarrow A^{t} + B^{t} = \begin{bmatrix} 1 & 3 \\ 2 & -3 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1+1 & 3+3 \\ 2+(-2) & -3+3 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 0 & 0 \end{bmatrix}$$

Calculate A + B.

$$\Rightarrow A + B = \begin{bmatrix} 1 & 2 \\ 3 & -3 \end{bmatrix} + \begin{bmatrix} 1 & -2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1+1 & 2+(-2) \\ 3+3 & -3+3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 6 & 0 \end{bmatrix}$$
Calculate $(A + B)^t$.

$$\Rightarrow (A+B)^t = \begin{bmatrix} 2 & 6 \\ 0 & 0 \end{bmatrix}$$

Conclusion:

Since
$$A^t + B^t = \begin{bmatrix} 2 & 6 \\ 0 & 0 \end{bmatrix}$$
 and $(A + B)^t = \begin{bmatrix} 2 & 6 \\ 0 & 0 \end{bmatrix}$.

We have verified that $A^t + B^t = (A + B)^t$.

Find the matrix 'Z' from these equations. Q8.

(i)
$$4\begin{bmatrix} 5 \\ 10 \end{bmatrix} - 5Z = \sqrt{5}\begin{bmatrix} \sqrt{45} \\ \sqrt{5} \end{bmatrix}$$
 (ii) $Z + \begin{bmatrix} 5 \\ -7 \end{bmatrix} = 3Z - \begin{bmatrix} 5 \\ 3 \end{bmatrix}$

Solution:

(i)
$$4\begin{bmatrix} 5 \\ 10 \end{bmatrix} - 5Z = \sqrt{5}\begin{bmatrix} \sqrt{45} \\ \sqrt{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 20 \\ 40 \end{bmatrix} - 5Z = \sqrt{5} \begin{bmatrix} 3\sqrt{5} \\ \sqrt{5} \end{bmatrix} \qquad ; \qquad [\because \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5}]$$

$$\Rightarrow \begin{bmatrix} 20 \\ 40 \end{bmatrix} - 5Z = \begin{bmatrix} 3 \times 5 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 20 \\ 40 \end{bmatrix} - 5Z = \begin{bmatrix} 15 \\ 5 \end{bmatrix}$$

$$\Rightarrow 5Z = \begin{bmatrix} 20 \\ 40 \end{bmatrix} - \begin{bmatrix} 15 \\ 5 \end{bmatrix} \Rightarrow 5Z = \begin{bmatrix} 5 \\ 35 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 20 \\ 40 \end{bmatrix} - 5Z = \begin{bmatrix} 3 \times 5 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 20 \\ 40 \end{bmatrix} - 5Z = \begin{bmatrix} 15 \\ 5 \end{bmatrix}$$

$$\Rightarrow 5Z = \begin{bmatrix} 20 \\ 40 \end{bmatrix} - \begin{bmatrix} 15 \\ 5 \end{bmatrix} \Rightarrow 5Z = \begin{bmatrix} 5 \\ 35 \end{bmatrix}$$

$$\Rightarrow Z = \begin{bmatrix} \frac{5}{5} \\ \frac{35}{5} \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
 (Divided by 5)

Q9. (a) Mention the order of the indicated products where possible.

(i)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 5 & 3 \end{bmatrix}$$

Solution: The first matrix is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ which is a 2 × 2 matrix.

The second matrix is $[5 \ 3]$ which is a 1×2 matrix.

Matrix multiplication is only possible if the number of columns in the first matrix equals the number of rows in the second matrix.

In this case, the first matrix has 2 columns, and the second matrix has 1 row. Since these numbers do not match, the multiplication is not possible.

(ii)
$$\begin{bmatrix} 5 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

The first matrix is a 1×2 matrix: [5 3] Solution:

The second matrix is a 2×2 matrix: $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$

Matrix multiplication is possible when the number of columns in the first matrix is equal to the number of rows in the second matrix.

Here, the first matrix has 2 columns, and the second matrix has 2 rows, so the multiplication is possible.