Exercise 4.1

Solve the inequality and graph the solution.

Q1.
$$5x - 12 \le 3x - 4$$

Solution: $5x - 12 \le 3x - 4$

Subtract 3x from both sides of the inequality to get the x terms on one side:

$$\Rightarrow 5x-12-3x \le 3x-4-3x \Rightarrow 2x-12 \le -4$$

Add 12 to both sides to isolate the x term:

$$\Rightarrow 2x-12+12 \leq -4+12 \Rightarrow 2x \leq 8$$

Divide both sides by 2 to solve for x.

$$\Rightarrow \quad \frac{2x}{2} \le \frac{8}{2} \qquad \Rightarrow \quad x \le 4$$

So the solution is $x \le 4$.

This means x can be any value less than or equal to 4.

Graph of the solution:

Now, let's represent this solution on a number line. We will use a closed circle at 4 to indicate that 4 is included in the solution, and shade to the left to indicate all values less than 4.

Q2.
$$1-8x \le -4(2x-1)$$

Solution:

Let's solve the inequality $1 - 8x \le -4(2x - 1)$ step by step:

Distribute the -4 on the right side of the inequality:

$$\Rightarrow$$
 $1-8x \le -8x+4$

Add 8x to both sides of the inequality:

$$\Rightarrow 1-8x+8x \le -8x+4+8x$$

Since $1 \le 4$ is always true, this means that the inequality is true for all real numbers.

Graph of the solution:

To represent this on a number line, you would shade the entire number line.

Q3.
$$\frac{-2}{3}x - 2 < \frac{1}{3}x + 8$$

Solution:
$$\frac{-2}{3}x - 2 < \frac{1}{3}x + 8$$

$$\frac{-2}{3}x - 2 < \frac{1}{3}x + 8$$

Add 2 to both sides of the inequality:

$$\Rightarrow \frac{-2}{3}x - 2 + 2 < \frac{1}{3}x + 8 + 2 \qquad \Rightarrow \qquad \frac{-2}{3}x < \frac{1}{3}x + 10$$

Subtract $\frac{1}{3}x$ from both sides of the inequality:

$$\Rightarrow \frac{-2}{3}x - \frac{1}{3}x < \frac{1}{3}x + 10 - \frac{1}{3}x$$

$$\Rightarrow \quad \frac{-3}{3}x < 10 \quad \Rightarrow \quad -x < 10$$

Multiply both sides by -1.

Remember to flip the inequality sign when multiplying or dividing by a negative number:

$$\Rightarrow (-1)(-x) > (-1)(10) \Rightarrow x > -10$$

So the solution is x > -10.

Graph of the solution:

Q4.
$$8-\frac{4}{5}x > -14+2x$$

Solution:
$$8 - \frac{4}{5}x > -14 + 2x$$

Add $\frac{4}{5}x$ to both sides of the inequality:

$$\Rightarrow 8 - \frac{4}{5}x + \frac{4}{5}x > -14 + 2x + \frac{4}{5}x$$

$$\Rightarrow$$
 8 > -14 + $\frac{10}{5}x + \frac{4}{5}x$ \Rightarrow 8 > -14 + $\frac{14}{5}x$

Add 14 to both sides of the inequality:

$$\Rightarrow$$
 8+14>-14+ $\frac{14}{5}x+14$ \Rightarrow 22> $\frac{14}{5}x$

Multiply both sides by $\frac{5}{14}$ to isolate x.

$$\Rightarrow \quad \frac{5}{14} \cdot 22 > \frac{5}{14} \cdot \frac{14}{5}x \quad \Rightarrow \quad \frac{110}{14} > x \qquad \Rightarrow \quad \frac{55}{7} > x$$

So the solution is $x < \frac{55}{7}$.

Graph of the solution:

Q5.
$$-0.6(x-5) \le 15$$

Solution:
$$-0.6(x-5) \le 15$$

Distribute the -0.6 on the left side of the inequality:

$$\Rightarrow$$
 $-0.6x + 3 \le 15$

Subtract 3 from both sides of the inequality.

$$\Rightarrow$$
 $-0.6x + 3 - 3 \le 15 - 3 \Rightarrow $-0.6x \le 12$$

Divide both sides by -0.6.

Remember to flip the inequality sign when dividing by a negative number:

$$\Rightarrow \quad \frac{-0.6x}{-0.6} \ge \frac{12}{-0.6} \qquad \Rightarrow \qquad x \ge \frac{120}{-6} \qquad \Rightarrow \qquad x \ge -20$$

So the solution is $x \ge -20$.

Graph of the solution:

Q6.
$$\frac{-1}{4}(x-12) > -2$$

Solution:
$$\frac{-1}{4}(x-12) > -2$$

Multiply both sides by -4.

When multiplying or dividing an inequality by a negative number, you must reverse the inequality sign.

$$\Rightarrow \quad \frac{-1}{4}(x-12) > -2 \quad \Rightarrow \quad (-4) \cdot \frac{-1}{4}(x-12) < (-4) \cdot (-2)$$

$$\Rightarrow x-12 < 8$$

Add 12 to both sides of the inequality.

$$\Rightarrow x-12+12<8+12 \Rightarrow x<20$$

So, the solution to the inequality is x < 20.

Graph of the solution:

Translate the phrase into an inequality. Then solve the Þ inequality and graph the solution.

Four more than the product of 3 and x is less than 40. Q7. Solution:

The phrase "the product of 3 and x" translates to 3x.

"Four more than the product of 3 and x" translates to 3x + 4.

"is less than 40" translates to < 40.

Putting it all together, the inequality is:

3x + 4 < 40

Now, let's solve the inequality:

Subtract 4 from both sides.

 $3x + 4 - 4 < 40 - 4 \Rightarrow$ 3x < 36

Divide both sides by 3.

$$\Rightarrow \frac{3x}{3} < \frac{36}{3} \Rightarrow x < 12$$

Sign So the solution to the inequality is x < 12.

Graph of the solution:

Twice the sum of x and 8 appears less than or equal to -2. Q8. Solution:

"The sum of x and 8" translates to x + 8.

"Twice the sum of x and 8" translates to 2(x+8).

"Appears less than or equal to -2" translates to ≤ -2 .

Putting it all together, the inequality is:

$$\Rightarrow$$
 $2(x+8) \leq -2$

Now, let's solve the inequality:

Distribute the 2.

$$\Rightarrow$$
 $2x+16 \leq -2$

Subtract 16 from both sides.

$$\Rightarrow 2x+16-16 \le -2-16 \Rightarrow 2x \le -18$$

Divide both sides by 2.

$$\Rightarrow \frac{2x}{2} \le \frac{-18}{2} \Rightarrow x \le -9$$

So the solution to the inequality is $x \le -9$.

Graph of the solution:

Write and solve an inequality to find the possible values of:

Q9. Area > 81 square feet

Solution:

The area of a rectangle is given by the formula:

Area =
$$length \times width$$

In this case, the length is (x + 2) feet and the width is 9 feet. We are given that the area is greater than 81 square feet.

So, we can write the inequality:

$$\Rightarrow$$
 9(x+2) > 81

Now, let's solve the inequality:

Distribute the 9.

$$\Rightarrow 9x + 18 > 81 \Rightarrow 9x + 18 - 18 > 81 - 18 \Rightarrow 9x > 63$$

Divide both sides by 9.

$$\Rightarrow \frac{9x}{9} > \frac{63}{9} \Rightarrow x > 7$$

So, the possible values of x are greater than 7.

The final answer is x > 7.

Q10. Area ≤ 44 square centimeters

Solution:

The area of a triangle is given by the formula:

Area =
$$\frac{1}{2}$$
 × base × height

In this case, the base is (x + 1) cm and the height is 8 cm. We are given that the area is less than or equal to 44 square centimeters. So, we can write the inequality:

$$\Rightarrow \frac{1}{2} \times 8 \times (x+1) \le 44$$

Simplify the equation.

$$\Rightarrow 4(x+1) \leq 44$$

Now, let's solve the inequality:

Distribute the 4.

$$\Rightarrow$$
 $4x + 4 \le 44$

Subtract 4 from both sides.

$$\Rightarrow 4x + 4 - 4 \le 44 - 4 \Rightarrow 4x \le 40$$

Divide both sides by 4.

$$\Rightarrow \quad \frac{4x}{4} \le \frac{40}{4} \qquad \Rightarrow \quad x \le 10$$

So, the possible values of x are less than or equal to 10.

The final answer is $x \le 10$.

Solve each inequality:

Q11.
$$(x+1)(x-3) > 0$$

Solution:
$$(x+1)(x-3) > 0$$

To solve the inequality (x+1)(x-3) > 0, we need to determine the intervals where the expression (x+1)(x-3) is positive.

First, find the critical points by setting each factor equal to zero:

$$\Rightarrow$$
 $x+1=0$ \Rightarrow $x=-1$

$$\Rightarrow$$
 $x-3=0$ \Rightarrow $x=3$

These critical points divide the number line into three intervals:

$$\Rightarrow x < -1 \Rightarrow -1 < x < 3 \Rightarrow x > 3$$

Now, we test a value from each interval to see if the inequality holds:

• x < -1:

Let x = -2. Then (-2 + 1)(-2 - 3) = (-1)(-5) = 5 > 0.

So the inequality holds for x < -1.

-1 < x < 3:

Let x = 0. Then (0+1)(0-3) = (1)(-3) = -3 < 0.

So the inequality does not hold for -1 < x < 3.

 $\bullet \qquad x > 3;$

Let
$$x = 4$$
. Then $(4+1)(4-3) = (5)(1) = 5 > 0$.

So the inequality holds for x > 3.

Therefore, the solution to the inequality (x+1)(x-3) > 0 is x < -1 or x > 3.

The final answer is x < -1 or x > 3.

Q12.
$$(x-9)(x+1) < 0$$

Solution:
$$(x-9)(x+1) < 0$$

To solve the inequality (x-9)(x+1) < 0, we need to find the intervals where the expression (x-9)(x+1) is negative.

First, find the critical points by setting each factor equal to zero:

$$\Rightarrow x-9=0 \Rightarrow x=9$$

$$\Rightarrow x+1=0 \Rightarrow x=-1$$

These critical points divide the number line into three intervals:

$$\Rightarrow x < -1 \Rightarrow -1 < x < 9 \Rightarrow x > 9$$

Now, we test a value from each interval to see if the inequality holds:

• x < -1:

Let
$$x = -2$$
. Then $(-2 - 9)(-2 + 1) = (-11)(-1) = 11 > 0$.

So the inequality does not hold for x < -1.

• -1 < x < 9:

Let
$$x = 0$$
. Then $(0-9)(0+1) = (-9)(1) = -9 < 0$.

So the inequality holds for -1 < x < 9.

• x > 9:

Let
$$x = 10$$
. Then $(10 - 9)(10 + 1) = (1)(11) = 11 > 0$.

So the inequality does not hold for x > 9.

Therefore, the solution to the inequality (x-9)(x+1) < 0 is -1 < x < 9.

The final answer is -1 < x < 9.

Q13.
$$x^2 - x - 90 > 0$$

Solution:

To solve the inequality $x^2 - x - 90 > 0$, we first need to find the roots of the corresponding quadratic equation $x^2 - x - 90 = 0$.

We can factor the quadratic expression:

$$\Rightarrow x^2 - x - 90 = (x - 10)(x + 9)$$

So, the roots are x = 10 and x = -9.

These roots divide the number line into three intervals:

 $\Rightarrow x < -9 \Rightarrow -9 < x < 10 \Rightarrow x > 10$

Now, we test a value from each interval to see if the inequality holds:

• x < -9:

Let x = -10. Then $(-10)^2 - (-10) - 90 = 100 + 10 - 90 = 20 > 0$.

So the inequality holds for x < -9.

-9 < x < 10:

Let x = 0. Then $(0)^2 - (0) - 90 = -90 < 0$.

So the inequality does not hold for -9 < x < 10.

• x > 10:

Let x = 11. Then $(11)^2 - (11) - 90 = 121 - 11 - 90 = 20 > 0$.

So the inequality holds for x > 10.

Therefore, the solution to the inequality $x^2 - x - 90 > 0$ is x < -9 or x > 10.

The final answer is x < -9 or x > 10.

- Q14. $x^2 + 4x 21 < 0$
- **Solution:** $x^2 + 4x 21 < 0$

To solve the inequality $x^2 + 4x - 21 < 0$, we first need to find the roots of the corresponding quadratic equation $x^2 + 4x - 21 = 0$.

We can factor the quadratic expression:

 \Rightarrow $x^2 + 4x - 21 = (x + 7)(x - 3)$ So, the roots are x = -7 and x = 3.

These roots divide the number line into three intervals:

 $\Rightarrow x < -7 \Rightarrow -7 < x < 3 \Rightarrow x > 3$

Now, we test a value from each interval to see if the inequality holds:

 $\bullet \qquad x < -7:$

Let x = -8. Then $(-8)^2 + 4(-8) - 21 = 64 - 32 - 21 = 11 > 0$.

So the inequality does not hold for x < -7.

• -7 < x < 3:

Let x = 0. Then $(0)^2 + 4(0) - 21 = -21 < 0$.

So the inequality holds for -7 < x < 3.

 \bullet x>3:

Let x = 4. Then $(4)^2 + 4(4) - 21 = 16 + 16 - 21 = 11 > 0$.

So the inequality does not hold for x > 3.

Therefore, the solution to the inequality $x^2 + 4x - 21 < 0$ is -7 < x < 3.

The final answer is -7 < x < 3.

Q15. $x^2 + 8x + 16 \ge 0$

Solution: $x^2 + 8x + 16 \ge 0$

To solve the inequality $x^2 + 8x + 16 \ge 0$, we first need to analyze the corresponding quadratic expression $x^2 + 8x + 16$.

We can factor the quadratic expression:

$$\Rightarrow$$
 $x^2 + 8x + 16 = (x + 4)(x + 4) = (x + 4)^2$

So, the quadratic expression can be written as $(x+4)^2$. Since any real number squared is non-negative, $(x+4)^2$ is always greater than or equal to 0 for any real number x.

$$\Rightarrow (x+4)^2 \ge 0$$

The inequality $(x+4)^2 \ge 0$ holds for all real numbers x.

Therefore, the solution to the inequality $x^2 + 8x + 16 \ge 0$ is all real numbers.

The final answer is <u>all real numbers</u>; $x \neq 4$.

Q16.
$$9x^2 - 6x + 1 \le 0$$

Solution:
$$9x^2 - 6x + 1 \le 0$$

To solve the inequality $9x^2 - 6x + 1 \le 0$, we first need to analyze the corresponding quadratic expression:

$$\Rightarrow$$
 $9x^2-6x+1$

We can factor the quadratic expression:

$$\Rightarrow 9x^2 - 6x + 1 = (3x - 1)(3x - 1) = (3x - 1)^2$$

So, the quadratic expression can be written as $(3x - 1)^2$. Since any real number squared is non-negative, $(3x - 1)^2$ is always greater than or equal to 0 for any real number x.

$$\Rightarrow (3x-1)^2 \ge 0$$

However, we are looking for when $(3x-1)^2 \le 0$. The only way for a square to be less than or equal to 0 is for it to be equal to 0.

So we need to solve:

$$\Rightarrow (3x-1)^2 = 0 \Rightarrow 3x-1 = 0 \Rightarrow 3x = 1 \Rightarrow x = \frac{1}{3}$$

Therefore, the solution to the inequality $9x^2 - 6x + 1 \le 0$ is $x = \frac{1}{3}$.

Q17. Mr. Khalid has a field and want to make a rectangular garden with perimeter of 68 ft. He would like the area of a garden to be at least 240 square feet. What would the width of the garden be?

Solution:

Let, l be the length and w be the width of the rectangular garden. The perimeter of the rectangular garden is given by P=2l+2w. We are given that the perimeter is $68 \, \mathrm{ft}$, so we have:

$$\Rightarrow$$
 $2l + 2w = 68$

Dividing by 2, we get:

$$\Rightarrow l+w=34$$

We can express the length in terms of the width:

$$\Rightarrow l = 34 - w$$

The area of the rectangular garden is given by A = lw. We are given that the area must be at least 240 square feet, so we have:

 $\Rightarrow lw \ge 240$

Substitute I = 34 - w.

 $\Rightarrow (34 - w)w \ge 240 \qquad \Rightarrow 34w - w^2 \ge 240$

 \Rightarrow $0 \ge w^2 - 34w + 240$ \Rightarrow $w^2 - 34w + 240 \le 0$

Now, we need to find the roots of the quadratic equation:

 \Rightarrow $w^2 - 34w + 240 = 0$

We can factor the quadratic expression:

 $\Rightarrow (w-10)(w-24)=0$

So, the roots are w = 10 and w = 24.

These roots divide the number line into three intervals:

 \Rightarrow w < 10 \Rightarrow 10 < w < 24 \Rightarrow w > 24

We are looking for where $w^2 - 34w + 240 \le 0$.

We test a value from each interval.

w < 10:

Let w = 0. Then $(0)^2 - 34(0) + 240 = 240 > 0$.

So the inequality does not hold for w < 10.

0 10 < w < 24:

Let w = 15. Then $(15)^2 - 34(15) + 240 = 225 - 510 + 240 = -45 < 0$.

So the inequality holds for 10 < w < 24.

w > 24:

Let w = 25. Then $(25)^2 - 34(25) + 240 = 625 - 850 + 240 = 15 > 0$.

So the inequality does not hold for w > 24.

Since we are looking for $w^2 - 34w + 240 \le 0$, we include the roots in our interval. Therefore, the solution to the inequality is $10 \le w \le 24$.

The width of the garden can be between 10 ft and 24 ft, inclusive.

The final answer is $10 \le w \le 24$.

Q18. Are -2, -1, 0, 1, 2 solution of the inequality $2x^2 + 3x + 1 \le 0$. Solution:

To determine if the given values -2, -1, 0, 1, 2 are solutions to the inequality $2x^2 + 3x + 1 \le 0$, we need to substitute each value of x into the inequality and check if it holds true.

x = -2:

$$\Rightarrow 2(-2)^2 + 3(-2) + 1 = 2(4) - 6 + 1 = 8 - 6 + 1 = 3$$

Since 3 > 0, -2 is not a solution.

0 x = -1:

$$\Rightarrow 2(-1)^2 + 3(-1) + 1 = 2(1) - 3 + 1 = 2 - 3 + 1 = 0$$

Since $0 \le 0$, -1 is a solution.

$$\bullet \qquad x=0:$$

$$\Rightarrow 2(0)^2 + 3(0) + 1 = 0 + 0 + 1 = 1$$
Since 1 > 0, 0 is not a solution.

$$\bullet \qquad x=1:$$

$$\Rightarrow 2(1)^2 + 3(1) + 1 = 2(1) + 3 + 1 = 2 + 3 + 1 = 6$$
Since 6 > 0, 1 is not a solution.

$$\bullet \qquad x=2:$$

$$\Rightarrow$$
 2(2)² + 3(2) + 1 = 2(4) + 6 + 1 = 8 + 6 + 1 = 15.

Since 15 > 0, 2 is not a solution.

Therefore, only x = -1 is a solution to the inequality $2x^2 + 3x + 1 \le 0$. There are no solutions except -1.

Q19. The stopping distance d(x) (in meters) of a car traveling at x km/h is modeled by $d(x) = 0.05x^2 + 0.2x$. If the maximum stopping distance allowed in a school zone is 35 meters, find the speed range that ensures the stopping distance does not exceed this limit.

Solution:
$$d(x) = 0.05x^2 + 0.2x$$

We are given the stopping distance function $d(x) = 0.05x^2 + 0.2x$, where x is the speed in km/h. We want to find the speed range such that the stopping distance does not exceed 35 meters.

So, we need to solve the inequality:

$$\Rightarrow 0.05x^2 + 0.2x \le 35$$

First, let's rewrite the inequality:

$$\Rightarrow$$
 0.05 $x^2 + 0.2x - 35 \le 0$

To solve this inequality, we can first find the roots of the quadratic equation:

$$\implies 0.05x^2 + 0.2x - 35 = 0$$

We can multiply the equation by 20 to get rid of the decimals:

$$\Rightarrow x^2 + 4x - 700 = 0$$

Now we can use the quadratic formula to find the roots:

$$\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Where a = 1, b = 4, and c = -700.

$$\Rightarrow x = \frac{-4 \pm \sqrt{4^2 - 4(1)(-700)}}{2(1)} \Rightarrow x = \frac{-4 \pm \sqrt{16 + 2800}}{2}$$

$$\Rightarrow x = \frac{-4 \pm \sqrt{2816}}{2} \Rightarrow x = \frac{-4 \pm 53.066}{2}$$

The two roots are:

$$\Rightarrow x_1 = \frac{-4 - 53.066}{2} = \frac{-57.066}{2} \approx -28.533$$

 $x_2 = \frac{-4 + 53.066}{2} = \frac{49.066}{2} \approx 24.54$

Since speed cannot be negative, we only consider the positive root:

 $x_2 \approx 24.54$

The quadratic expression is less than or equal to 0 between the roots.

Therefore, the speed range is:

 $-28.533 \le x \le 24.54$ \Rightarrow

Since speed must be non-negative, we have:

 $0 \le x \le 24.54$ \Rightarrow

> Therefore, the speed range that ensures the stopping distance does not exceed 35 meters is approximately 0 km/h to 24.54 km/h.

The final answer is $0 \le x \le 24.54$.

Q20. A rectangular garden is to be enclosed with a fence. The total length of the fence is at most 60 meters and the width x of the garden is twice its length. Find the possible dimensions of the garden.

Solution:

Let, l be the length and w be the width of the rectangular garden. We are given that the width w is twice its length, so w = 2l.

The perimeter of the rectangle is P = 2l + 2w. The total length of the fence is at most 60 meters, so $P \leq 60$.

We have $2l + 2w \le 60$. Since w = 2l, we can substitute this into the inequality:

 $2l + 2(2l) \le 60$

$$\Rightarrow 2l+4l \le 60 \Rightarrow 6l \le 60 \Rightarrow l \le \frac{60}{6} \Rightarrow l \le 10$$

So the length is at most 10 meters.

Since the width is twice the/length, we have:

 $w=2l\leq 2(10)$ $w \leq 20$ \Rightarrow

So the width is at most 20 meters.

Since the length and width must be positive, we have l > 0 and w > 0.

Therefore, the possible dimensions are:

 $0 < w \le 20$ $0 < l \le 10 \Rightarrow$

Since w = 2l, the possible dimensions are:

 $0 < l \le 10$ meters \Rightarrow

So, $0 < w \le 20$ meters

The final answer is:

 $0 < length \le 10$ meters and $0 < width \le 20$ meters

 $L: x \le 10 \,\mathrm{m} \,, \quad W: 2x \le 20 \,\mathrm{m}$

