Exercise 2.1

Q1. Write the following quadratic equation in standard form:

i.
$$(x+2)(x-3)=5$$

Solution:
$$(x+2)(x-3) = 5$$

Equation in standard form is given by $ax^2 + bx + c = 0$.

$$\Rightarrow$$
 $(x+2)(x-3)=5$

$$\Rightarrow x^2 - 3x + 2x - 6 = 5 \Rightarrow x^2 - x - 6 = 5$$

$$\Rightarrow x^2 - 3x + 2x - 6 = 5 \Rightarrow x^2 - x - 6 = 5$$

$$\Rightarrow x^2 - x - 6 - 5 = 0 \Rightarrow x^2 - x - 11 = 0$$

ii.
$$(x-5)^2 - (2x+4)^2 = 7$$

Solution:
$$(x-5)^2 - (2x+4)^2 = 7$$

Equation in standard form is given by $ax^2 + bx + c = 0$.

$$\Rightarrow$$
 $(x-5)^2-(2x+4)^2=7$

$$\Rightarrow$$
 $(x^2 - 10x + 25) - (4x^2 + 16x + 16) = 7$

$$\Rightarrow$$
 $x^2 - 10x + 25 - 4x^2 - 16x - 16 = 7$

$$\Rightarrow -3x^2 - 26x + 25 - 16 = 7 \Rightarrow -3x^2 - 26x + 9 = 7$$

$$\Rightarrow -3x^2 - 26x + 9 - 7 = 0 \Rightarrow -3x^2 - 26x + 2 = 0$$

$$\Rightarrow 3x^2 + 26x - 2 = 0$$

iii.
$$x = x(x-1)$$

Solution:
$$x = x(x-1)$$

Equation in standard form is given by $ax^2 + bx + c = 0$.

$$\Rightarrow x = x(x-1) \Rightarrow x = x^2 - x$$

$$\Rightarrow x = x(x-1) \Rightarrow x = x^2 - x$$

$$\Rightarrow 0 = x^2 - x - x \Rightarrow 0 = x^2 - 2x$$

$$\Rightarrow 0 = x(x-2) \Rightarrow x^2 - 2x = 0$$

Solve the following equations by factoring method. Q2.

i.
$$(x-1)(x-4)=0$$

Solution:
$$(x-1)(x-4) = 0$$

To solve the equation (x-1)(x-4)=0 by factorization, we set each factor equal to zero and solve for x:

⇒
$$x-1=0$$
 ; $x-4=0$
⇒ $x=1$; $x=4$
∴ Solution set = {1,4}
ii. $x^2-2x+1=0$
⇒ $x^2-x-x+1=0$ ⇒ $x(x-1)-1(x-1)=0$
⇒ $(x-1)(x-1)=0$ ⇒ $x-1=0$ ⇒ $x=1$
∴ Solution set = {1}
iii. $x^2-7x-8=0$
Solution: $x^2-7x-8=0$
⇒ $x^2+x-8x-8=0$
⇒ $x(x+1)-8(x+1)=0$ ⇒ $(x-8)(x+1)=0$
⇒ $x-8=0$; $x+1=0$
⇒ $x^2-4x+4=(2x-7)^2$
Solution: $x^2-4x+4=(2x-7)(2x-7)$
⇒ $x^2-4x+4=4x^2-14x-14x+49$
⇒ $x^2-4x+4=4x^2-14x-14x+49$
⇒ $x^2-4x+4=4x^2-28x+49$
⇒ $0=4x^2-28x+49-x^2+4x-4$
⇒ $0=3x^2-24x+45$ ⇒ $x^2-8x+15=0$
⇒ $x^2-3x-5x+15=0$ ⇒ $x(x-3)-5(x-3)=0$
⇒ $x-3=0$; $x-5=0$
⇒ $x-3=0$; $x-3=0$

$$\Rightarrow x+10=0 \quad ; \qquad x-3=0$$

$$\Rightarrow x = -10 ; x = 3$$

Solution set = $\{3, -10\}$..

Q3. Solve the following equations by completing the square method:

i.
$$x^2 + 4x - 32 = 0$$

Solution:
$$x^2 + 4x = 32$$
(1)

Multiplying co-efficient of x with $\frac{1}{2}$. i. e., $\frac{1}{2}$ (4) = 2

Now adding $(2)^2 = 4$ on both sides of the equation (1), we have:

$$\Rightarrow$$
 $x^2 + 4x + 4 = 32 + 4$ \Rightarrow $x^2 + 4x + 4 = 36$

Now the left-hand side is a perfect square trinomial:

$$\Rightarrow (x+2)^2 = 36$$

Take the square root of both sides:

$$\Rightarrow x+2=\pm\sqrt{36} \Rightarrow x+2=\pm 6$$

Finally, solve for x by subtracting 2 from both sides:

$$\Rightarrow x = -2 \pm 6$$

The solutions to the equation are:

$$\Rightarrow x = -2 + 6 \quad ; \quad x = -2 - 6$$

$$\Rightarrow x=4 \qquad ; \qquad x=-8$$

$$\therefore$$
 Solution set = $\{4, -8\}$

$$ii. \qquad x^2 + 8x = 0$$

Solution:
$$x^2 = -8x$$
(1)

Multiplying co-efficient of x with $\frac{1}{2}$. i. e., $\frac{1}{2}$ (8) = 4

Now adding $(4)^2 = 16$ on both sides of the equation (1), we have:

$$\Rightarrow$$
 $x^2 + 8x + 16 = 0 + 16$

$$\Rightarrow (x+4)^2 = 16 \Rightarrow x+4 = \pm \sqrt{16} \Rightarrow x+4 = \pm 4$$
Finally, solve for x.

$$\Rightarrow x+4=4 ; x=-4-4$$

\Rightarrow x=4-4 ; x=-8

$$\Rightarrow x = 4 - 4 : x = -8$$

$$\Rightarrow x = 0$$

$$\therefore$$
 Solution set = $\{0, -8\}$

iii.
$$x^2 + 6x - 9 = 0$$

Solution:
$$x^2 + 6x = 9$$
(1)

To find the number to complete the square. It is $\left(\frac{6}{2}\right)^2 = 3^2 = 9$.

Add this number to both sides:

$$\Rightarrow$$
 $x^2 + 6x + 9 = 9 + 9 \Rightarrow $x^2 + 6x + 9 = 18$$

Write the left side as a perfect square:

$$\Rightarrow (x+3)^2 = 18 \Rightarrow x+3 = \pm \sqrt{18}$$

$$\Rightarrow x+3=\pm\sqrt{9\times2} \Rightarrow x+3=\pm3\sqrt{2}$$

Finally, solve for x.

$$\Rightarrow x = -3 \pm 3\sqrt{2}$$

$$\therefore \quad \text{Solution set} = \{-3 \pm 3\sqrt{2}\}$$

iv.
$$3x^2 + 12x + 8 = 0$$

Solution:

To solve the equation $3x^2 + 12x + 8 = 0$ by completing the square, follow these steps:

Divide the entire equation by 3 to simplify the coefficients:

$$\Rightarrow x^2 + 4x + \frac{8}{3} = 0 \Rightarrow x^2 + 4x = -\frac{8}{3}$$

Find the number to complete the square. It is $\left(\frac{4}{2}\right)^2 = 2^2 = 4$.

Add this number to both sides:

$$\Rightarrow$$
 $x^2 + 4x + 4 = -\frac{8}{3} + 4$ \Rightarrow $x^2 + 4x + 4 = -\frac{8}{3} + \frac{12}{3}$

$$\Rightarrow x^2 + 4x + 4 = \frac{4}{3} \Rightarrow (x+2)^2 = \frac{4}{3}$$

Solve for x.

$$\Rightarrow x+2=\pm\sqrt{\frac{4}{3}} \Rightarrow x+2=\pm\frac{2}{\sqrt{3}}$$

$$\Rightarrow x = -2 \pm \frac{2}{\sqrt{3}} \qquad \Rightarrow x = \frac{-2\sqrt{3} \pm 2}{\sqrt{3}}$$

$$\therefore \quad \text{Solution set} = \left\{ \frac{-2\sqrt{3} \pm 2}{\sqrt{3}} \right\}$$

$$y. x^2 + x + 1 = 0$$

Solution:
$$x^2 + x = -1$$
 ...,....(1)

To find the number to complete the square. It is $\left(\frac{1}{2}\right)^2 = \frac{1}{4}$.

Add this number to both sides:

$$\implies x^2 + x + \frac{1}{4} = -1 + \frac{1}{4} \implies x^2 + x + \frac{1}{4} = -\frac{3}{4}$$

Write the left side as a perfect square:

$$\Rightarrow \left(x+\frac{1}{2}\right)^2 = -\frac{3}{4} \quad \Rightarrow \quad x+\frac{1}{2} = \pm\sqrt{-\frac{3}{4}} \quad \Rightarrow \quad x+\frac{1}{2} = \pm\frac{\sqrt{-3}}{2}$$

$$\Rightarrow x = -\frac{1}{2} \pm \frac{\sqrt{-3}}{2} \Rightarrow x = \frac{-1 \pm \sqrt{-3}}{2}$$

$$\therefore \quad \text{Solution set} = \left\{ \frac{-1 \pm \sqrt{-3}}{2} \right\}$$

$$vi. 4x^2 - 8x - 5 = 0$$

Solution:
$$4x^2 - 8x - 5 = 0$$

We first divide through by 4 the coefficient of x^2 to make the coefficient of x^2 equal to 1.

$$\Rightarrow x^2 - 2x - \frac{5}{4} = 0 \Rightarrow x^2 - 2x = \frac{5}{4}$$

Half the coefficient of x is $\frac{-2}{2} = -1$ and its square is $(-1)^2 = 1$.

$$\Rightarrow$$
 $x^2 - 2x + 1 = \frac{5}{4} + 1$ \Rightarrow $x^2 - 2x + 1 = \frac{9}{4}$ \Rightarrow $(x - 1)^2 = \frac{9}{4}$

Take the square root of both sides of the equation.

$$\Rightarrow x-1=\pm\sqrt{\frac{9}{4}} \Rightarrow x-1=\pm\frac{3}{2} \Rightarrow x=1\pm\frac{3}{2}$$

This gives us two solutions:

$$\Rightarrow$$
 $x = 1 + \frac{3}{2} = \frac{2}{2} + \frac{3}{2} = \frac{5}{2}$ and $x = 1 - \frac{3}{2} = \frac{2}{2} - \frac{3}{2} = -\frac{1}{2}$

$$\therefore \quad \text{Solution set} = \left\{ \frac{5}{2}, -\frac{1}{2} \right\}$$

Q4. Solve the following equations by quadratic formula:

i.
$$x^2 - 9 = 0$$

Solution:

To solve the quadratic equation $x^2 - 9 = 0$ using the quadratic formula, we first identify the coefficients:

$$\Rightarrow$$
 $a=1$, $b=0$, $c=-9$

The quadratic formula is given by:

$$\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Substituting the values of a, b, and c into the formula, we get:

$$\Rightarrow x = \frac{-0 \pm \sqrt{0^2 - 4(1)(-9)}}{2(1)} \Rightarrow x = \frac{\pm \sqrt{36}}{2} \Rightarrow x = \frac{\pm 6}{2}$$

This gives us two solutions:

$$\Rightarrow x = \frac{6}{2} = 3$$
; $x = \frac{-6}{2} = -3$

$$\therefore$$
 Solution set = $\{3, -3\}$

ii.
$$2x^2 + 5x + 1 = 0$$

Solution:

To solve the quadratic equation $2x^2 + 5x + 1 = 0$ using the quadratic formula, the coefficients are:

$$\Rightarrow$$
 $a=2$, $b=5$, $c=1$

The quadratic formula is given by:

$$\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Substituting the values of a, b, and c into the formula, we get:

$$\Rightarrow x = \frac{-5 \pm \sqrt{5^2 - 4(2)(1)}}{2(2)} \Rightarrow x = \frac{-5 \pm \sqrt{25 - 8}}{4} \Rightarrow x = \frac{-5 \pm \sqrt{17}}{4}$$

$$\therefore \qquad \text{Solution set} = \left\{ \frac{-5 \pm \sqrt{17}}{4} \right\}$$

iii.
$$x^2 - 23x - 24 = 0$$

Solution:

To solve the quadratic equation $x^2 - 23x - 24 = 0$ using the quadratic formula, the coefficients are:

$$\Rightarrow$$
 $a=1$, $b=-23$, $c=-24$

The quadratic formula is given by:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Substituting the values of a, b, and c into the formula, we get:

$$\Rightarrow x = \frac{-(-23) \pm \sqrt{(-23)^2 - 4(1)(-24)}}{2(1)}$$

$$\Rightarrow x = \frac{23 \pm \sqrt{529 + 96}}{2} \Rightarrow x = \frac{23 \pm \sqrt{625}}{2} \Rightarrow x = \frac{23 \pm 25}{2}$$

Now we have two solutions:

$$\Rightarrow$$
 $x = \frac{23+25}{2} = \frac{48}{2} = 24$; $x = \frac{23-25}{2} = \frac{-2}{2} = -1$

 $\therefore \quad \text{Solution set} = \{-1, 24\}$

iv.
$$(x+1)^2 = (2x-1)^2$$

Solution:

$$\Rightarrow x^2 + 2x + 1 = 4x^2 - 4x + 1$$

Subtracting $x^2 + 2x + 1$ from both sides:

$$\Rightarrow$$
 0 = 4x² - 4x + 1 - (x² + 2x + 1)

$$\Rightarrow 0 = 4x^2 - 4x + 1 - x^2 - 2x - 1 \Rightarrow 0 = 3x^2 - 6x$$
Divide by 3.

$$\Rightarrow 0 = x^2 - 2x \Rightarrow x^2 - 2x = 0$$

Applying the quadratic formula where a = 1, b = -2, and c = 0:

$$\Rightarrow x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(0)}}{2(1)} \Rightarrow x = \frac{2 \pm \sqrt{4}}{2} \Rightarrow x = \frac{2 \pm 2}{2}$$

This gives us two solutions:

$$\Rightarrow x = \frac{2+2}{2} = \frac{4}{2} = 2$$
; $x = \frac{2-2}{2} = \frac{0}{2} = 0$

$$\therefore$$
 Solution set = $\{0, 2\}$

$$v. \qquad \frac{x+1}{2} - \frac{x(x+2)}{3} = 0$$

Solution:

Multiply both sides by 3, we get: $\frac{3(x+1)}{6} - \frac{2x(x+2)}{6} = 0$

Simplify and combine like terms:

$$\Rightarrow \frac{3x+3-2x^2-4x}{6} = 0 (Multiply both sides by 6)$$

$$\Rightarrow 3x+3-2x^2-4x=0$$

$$\Rightarrow -2x^2 - x + 3 = 0$$

Now we can apply the quadratic formula with a = -2, b = -1, and c = 3.

$$\Rightarrow x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(-2)(3)}}{2(-2)}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{1 + 24}}{-4} \Rightarrow x = \frac{1 \pm \sqrt{25}}{-4} \Rightarrow x = \frac{1 \pm 5}{-4}$$

This gives us two solutions:

$$\Rightarrow x = \frac{1+5}{-4} = \frac{6}{-4} = -\frac{3}{2} \qquad ; \qquad x = \frac{1-5}{-4} = \frac{-4}{-4} = 1$$

$$\therefore \quad \text{Solution set} = \left\{1, -\frac{3}{2}\right\}$$

vi.
$$(x-2)(x-6) = (2x+1)(x+1)$$

Solution:

To solve the equation (x-2)(x-6) = (2x+1)(x+1), first expand both sides:

$$\Rightarrow x^2 - 6x - 2x + 12 = 2x^2 + x + 2x + 1$$

Simplify and combine like terms:

$$\Rightarrow$$
 $x^2 - 8x + 12 = 2x^2 + 3x + 1$

Subtract $x^2 - 8x + 12$ from both sides to set the equation to zero:

$$\Rightarrow$$
 0 = 2x² + 3x + 1 - (x² - 8x + 12)

$$\Rightarrow 0 = 2x^2 + 3x + 1 - x^2 + 8x - 12$$

$$\Rightarrow 0 = x^2 + 11x - 11$$

$$\Rightarrow x^2 + 11x - 11 = 0$$

Now apply the quadratic formula with a = 1, b = 11, and c = -11.

$$\Rightarrow x = \frac{-11 \pm \sqrt{11^2 - 4(1)(-11)}}{2(1)}$$

$$\Rightarrow x = \frac{-11 \pm \sqrt{121 + 44}}{2} \Rightarrow x = \frac{-11 \pm \sqrt{165}}{2}$$

$$\therefore \qquad \text{Solution set} = \left\{ \frac{-11 \pm \sqrt{165}}{2} \right\}$$

Q5. Solve $x^2 + 6x = -9$ by graphing and factoring method.

Solution: $x^2 + 6x = -9$

• Factoring method:

$$\Rightarrow x^2 + 6x + 9 = 0$$

$$\Rightarrow x^2 + 3x + 3x + 9 = 0 \Rightarrow x(x+3) + 3(x+3) = 0$$

$$\Rightarrow (x+3)(x+3) = 0 \Rightarrow (x+3)^2 = 0$$

Set the factor equal to zero and solve for x:

$$\Rightarrow$$
 $x+3=0$ and $x+3=0$

$$\Rightarrow$$
 $x = -3$ and $x = -3$

$$\therefore$$
 Solution set = $\{-3, -3\}$

Graphing method:

Now, let's solve the equation by graphing. We can rewrite the equation as $x^2 + 6x + 9 = 0$. Let $y = x^2 + 6x + 9$. We want to find the x-value(s) where y = 0.

Q6. Graph the function $y = x^2 + 2x + 4$ and verifying solution by completing square method.

Solution:

Let's graph the function $y = x^2 + 2x + 4$ and verify the solution by completing the square method.

First, let's complete the square for the quadratic expression $x^2 + 2x + 4$.

$$\Rightarrow y = x^2 + 2x + 4$$

$$\Rightarrow$$
 $y = (x^2 + 2x + 1) + 4 - 1$

 $\Rightarrow y = (x+1)^2 + 3$

From the completed square form, we can see that the vertex of the parabola is at (-1,3). Since the coefficient of the x^2 term is positive, the parabola opens upwards.

Graph:

Q7. Explain each term:

i. Solution

ii. root

iii. Zero of a function

iv. x-intercept

Solution:

- **Solution:** A solution is a value that, when substituted into an equation, makes the equation true. For example, in the equation x + 2 = 5, the solution is x = 3 because 3 + 2 = 5.
- **Root:** A root is a solution to an equation, typically a polynomial equation. In the context of a function f(x), a root is a value x such that f(x) = 0. For example, the roots of the equation $x^2 5x + 6 = 0$ are x = 2 and x = 3.
- **Zero of a function:** A zero of a function f(x) is a value x for which f(x) = 0. In other words, it's the x-value where the function's graph intersects or touches the x-axis. Zeros of a function are also called roots of the function.
- iv. x-intercept: An x-intercept is the point where the graph of a function intersects the x-axis. At this point, the y-coordinate is zero. So, an x-intercept is represented as (x,0), where x is the value where the graph